Session: Limits and sources of predictability

Discussion Questions:

» What are the current estimates of the limit of precipitation predictability, and how much of those are

not yet realized as prediction skill?

» What are the key biases most likely to impact precipitation prediction over the US at different time

scales? What is the relationship between biases in a model and its prediction skill?

» What existing and new observations and observation-modeling integration activities can be exploited
or organized to diagnose and address the biases? What new methodological and technological

advances can be brought to bear?

» Which diagnostics and metrics can be used to quantify prediction skill and predictability limits? Which
metrics can be used to detect small advances on precipitation forecasts for long term monitoring of

progress?



Evolution of skill scores

Prediction of some important sources of S2S predictability, such as the MJO, has
iImproved significantly over the past decade, but not the prediction of precipitation over
the northern Extratropics.
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North American
Multi-model Ensemble (NMME)

* Varies in Space and Time
* Low over North America
* No significant improvement

from Becker, Kirtman, Pegion, 2020, GRL
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Part |I: Presentations

« Regime Dynamics and Eddy Forcing

* Need High Temporal Resolution (at least
daily)

* Need large ensemble to cope with low
signal/noise ratios

 Model errors limit teleconnections and
regimes, predictability and prediction
quality.

« Phenomenological Interactions

* Need for Observations of fluxes,
precipitation, humidity, and in general
for those variables that reanalysis do
not do well.

Panel Discussions

« Importance of Process Level
Understanding in the Component
Models and Their Interactions

* Inadequate Observations vs.
Inadequate Models
* Observations Needed to Improve Models
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(a) ERA20C: Daily jet latitude vs NAO (C=0.17)
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Large-Scale Circulation Regimes: Systematic Errors

Climate Variable
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http://iridl.Ideo.columbia.edu/maproom/Global/index.html

e Regional-scale
precipitation is
synoptically controlled
by large-scale circulation

patterns

e Model representations of
these patterns often
contain significant
biases in structure

Angel Mufioz, IR
AGU Poster

International Research Institute
for Climate and Society
EARTH INSTITUTE | COLUMBIA UNIVERST
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Part |l: Presentations

Need Better Estimates of
Predictability

« Model Error
Better Tropics - Better Mid-Latitudes
Forecasts of Qpportunity

Robust Interactions among Weather
and Climate Prediction Communities

Coupling A-O (Ocean Fronts) and A-L
(Soil Moisture ...)

Resolution: Process or
Phenomenologically Driven

Empirical Bias Corrections

Panel Discussions

Low Hanging Fruit for Improving
Predictions over the Next 5-years?

* Resolution, High-Resolution Refinement, Large
Ensembles, Machine Learning, Identifying which
Model Biases Actual Affect Forecast Skill, Improved
DA, Holistic Approach

Organize effective model
developments and exploit computer
resources

* Too Many Sub-Critical Efforts, More
Collaboration/interaction Among WX and Climate
Communities, Forecast Use, Seamlessness

Advances in the last 10-20 years? Any
break-through? Or slow step by step?

« Significant Reduction in Biases, ENSO, Arctic Sea-Ice

Precipitation types?

* Very High-Resolution DA, Micro-physics Not Currently
Well Represented, Aerosols, Higher Frequency
Outputs,



We do not know the
upper limit of skill

Unrealistic estimates
Noise is large at these timescales

Understand predictability by
understanding signal
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We know that post-processing of
numerical model output (using
machine learning or other
techniques) works well for the
short range through the medium
range

How far can these methods
extend the skill? What new
methods can be developed for
S2S timescales?

Based on Herman et al. (2018a,b)

CSU-MLP forecasts & obs WPC forecasts & obs

CSU-MLP day3 & UFVS obs WPC ERO day3 & UFVS obs
issued 2020082900 for 24-hr period ending 2020090112 issued 2020082909 for 24-hr period ending 2020090112

CSU-MLP day2 & UFVS obs WPC ERO day2 & UFVS obs
issued 2020083000 for 24-hr period ending 2020090112 issued 2020083009 for 24-hr period ending 2020090112

CSU-MLP dayl & UFVS obs WPC ERO dayl & UFVS obs
issued 2020083100 for 24-hr period ending 2020090112 issued 2020083109 for 24-hr period ending 2020090112

WPC BSS = 0.0599



Coupled atmosphere-wave-ocean-land interactions can influence precipitation drivers
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Soil moisture-precipitation feedback as an amplifier of
precipitation error and limits of precipitation predictability

Pacific
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In parallel with fundamental advancements, artificial bias reduction techniques may yield useful insights

SST Regression versus DJF ENSO
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Key Points: Potential Paths Foreword

e Large-scale weather regime-based approach

* Resolving multi-scale processes

* Local feedbacks such as land-surface as potential source of predictability.
* Unified or Seamless modeling

 Machine Learning for a Range of Applications

e Systematic investigations of impacts of model bias

* Tropical heating as source of predictability

 Stakeholders/users engagement

* Improved understanding and representation of air-sea coupling

* Moisture profile observations are critical for correct initialization.

* More innovative ways of evaluating precipitation processes and types



